Armstrong* Engineered Solutions-Armstrong Condensate Pump Trap Packages

From institutional low pressure steam heating to industrial process critical heat transfer, Armstrong's engineered condensate pump trap packages provide the most efficient and cost-effective solution to customers' condensate recovery requirements.

Armstrong Engineered Condensate Pump Trap Packages provide the following benefits:

- Reduce piping layout, detailed engineering and procurement
- Minimize field labor
- Prevent installation errors and safety mishaps
- Shorten overall project lead times
- Single source responsibility
- Lower total cost of ownership for the customer

To optimize the return on your condensate investment, consider
Armstrong Engineered Pump Trap Package Solutions.
Pumping Trap Receiver Package Capacities

Motive Pressure	Total Lift or Back Pressure	$\begin{gathered} \text { SPT-104RP } \\ 1 " \times 1 " \end{gathered}$		$\begin{gathered} \text { DPT-104RP } \\ 1^{\prime \prime} \times 1 " \end{gathered}$		$\begin{gathered} \text { SPT-204RP } \\ 1 " \times 1 " \end{gathered}$		$\begin{gathered} \text { DPT-204RP } \\ 1^{1 "} \times 1^{1 "} \end{gathered}$		$\begin{gathered} \text { SPT-404RP } \\ 1 " \times 1 " \end{gathered}$		$\begin{gathered} \text { DPT-404RP } \\ 1^{\prime \prime} \times 1 " \end{gathered}$		$\begin{gathered} \text { SPT-206RP } \\ 1-1 / 2^{\prime \prime} \times 1-1 / 2^{\prime \prime} \end{gathered}$		$\begin{gathered} \text { DPT-206RP } \\ 1-1 / 2^{\prime \prime} \times 1-1 / 2^{" ~} \end{gathered}$	
		Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \end{gathered}$
psig	psig	lb/hr															
15		1,125	2,100	2,250	4,200	1,800	2,100	3,600	4,200	1,900	2,250	3,800	4,500	2,700	3,000	5,400	6,000
25		1,300	2,200	2,600	4,400	2,025	2,300	4,050	4,600	2,500	2,650	5,000	5,300	3,200	3,500	6,400	7,000
50		1,550	2,275	3,100	4,550	2,100	2,500	4,200	5,000	3,100	3,225	6,200	6,450	3,400	3,600	6,800	7,200
75	5	1,650	2,300	3,300	4,600	2,200	2,700	4,400	5,400	3,400	3,500	6,800	7,000	3,500	3,700	7,000	7,400
100		1,400	2,350	2,800	4,700	2,300	*	4,600	*	3,500	*	7,000	*	3,600	*	7,200	*
125		*	*	*	*	2,400	*	4,800	*	3,600	*	7,200	*	3,700	*	7,400	*
25		650	1,900	1,300	3,800	1,500	2,000	3,000	4,000	2,200	2,525	4,400	5,050	2,400	2,700	4,800	5,200
50		700	2,050	1,400	4,100	2,000	2,250	4,000	4,500	2,600	2,800	5,200	5,600	3,200	3,400	6,400	6,800
75	15	750	2,100	1,500	4,200	2,100	2,500	4,200	5,000	2,800	2,950	5,600	5,900	3,300	3,500	6,600	7,000
100		800	2,150	1,600	4,300	2,110	*	4,220	*	3,100	*	6,200	*	3,350	*	6,700	*
125		*	*	*	*	2,125	*	4,250	*	3,200	*	6,400	*	3,400	*	6,800	
35		400	1,800	800	3,600	1,500	1,700	3,000	3,400	2,000	2,350	4,000	4,700	2,100	2,300	4,200	4,600
50		450	1,935	900	3,870	1,700	2,000	3,400	4,000	2,400	2,675	4,800	5,350	2,400	2,600	4,800	5,200
75	25	500	2,050	1,000	4,100	1,900	2,300	3,800	4,600	2,600	2,800	5,200	5,600	2,700	2,900	5,400	5,800
100		550	2,075	1,100	4,150	2,000	*	4,000	*	2,800	*	5,600	*	2,800	*	5,600	*
125		*	*	*	*	2,100	*	4,200	*	2,900	*	5,800	*	2,900	*	5,800	*
50		250	1,620	500	3,240	1,400	1,700	2,800	3,400	1,900	2,350	3,800	4,700	1,500	2,000	3,000	4,000
60		265	1,730	530	3,460	1,500	2,000	3,000	4,000	2,200	2,600	4,400	5,200	2,000	2,300	4,000	4,600
75	40	300	1,850	600	3,700	1,700	2,200	3,400	4,400	2,400	2,675	4,800	5,350	2,300	2,500	4,600	5,000
100		350	1,950	700	3,900	1,800	*	3,600	*	2,500	*	5,000	*	2,400	*	4,800	*
125		*	*	*	*	1,920	*	3,840	*	2,700	*	5,400	*	2,500	*	5,000	*
70		*	*	*	*	1,100	2,000	2,200	4,000	1,800	2,400	3,600	4,800	1,150	2,000	2,300	4,000
75		*	*	*	*	1,300	2,300	2,600	4,600	2,000	2,450	4,000	4,900	1,325	2,300	2,650	4,600
100	60	*	*	*	*	1,600	*	3,200	*	2,300	*	4,600	*	1,900	*	3,800	*
125		*	*	*		1,720		3,440	*	2,400		4,800		2,000	*	4,000	*

NOTES: Published capacities are based on the use of external check valves supplied by Armstrong. Fill head measured from drain point to top of pump cap. See figures on page CRE-25. Although motive pressures are shown at high pressure differentials (difference between motive inlet pressure and total lift or back pressure), it is preferable to use a motive pressure of $10-15 \mathrm{psig}$ ($0.65-1.0 \mathrm{bar}$) above discharge (outlet) pressure. This ensures longevity of economical (brass) check valves and reduces both venting time and temperature differential (on steam). If a higher differential is used, stainless steel check valves are recommended.
*Consult factory.
Custom packages available upon request-consult factory.

Metric Conversion Formulas

Convert lb/hr to kg/hr—By dividing by 2.2046 Example: $1,800 \mathrm{lb} / \mathrm{hr} \div 2.2046=816 \mathrm{~kg} / \mathrm{hr}$
Convert psig to bar-By dividing by $\mathbf{1 4 . 5}$ Example: $15 \mathrm{psi} \div 14.5=1.03 \mathrm{bar}$
Convert psig to $\mathbf{k g} / \mathrm{cm}^{2}$ —By dividing by 14.22 Example: $15 \mathrm{psi} \div 14.22=1.05 \mathrm{~kg} / \mathrm{cm}^{2}$

All dimensions and weights are approximate. Use certified print for exact dimensions. Design and materials are subject to change without notice.

For a fully detailed certified drawing, refer to:
SPT-400RP/DPT-400RP CDF \#1005
SPT-3500RP/DPT-3500RP CDF \#1046

Pumping Trap Receiver Package Capacities																	
Motive Pressure	Total Lift or Back Pressure	$\begin{gathered} \text { SPT-406RP } \\ 1-1 / 2^{1 "} \times 1-1 / 2^{\prime \prime} \\ \hline \end{gathered}$		$\begin{gathered} \text { DPT-406RP } \\ 1-1 / 2^{1 "} \times 1-1 / 2^{" 1} \end{gathered}$		$\begin{aligned} & \text { SPT-408RP } \\ & 2^{" 1} \times 22^{1 "} \end{aligned}$		$\begin{gathered} \text { DPT-408RP } \\ 2 " \times 2 " \end{gathered}$		$\begin{aligned} & \text { SPT-3508RP } \\ & 2^{\prime \prime} \times 2{ }^{\prime \prime} \end{aligned}$		$\begin{gathered} \text { DPT-3508RP } \\ 2^{11} \times 2^{1 "} \\ \hline \end{gathered}$		$\begin{gathered} \text { SPT-308RP } \\ 2 " \times 2 " \end{gathered}$		$\begin{gathered} \text { DPT-308RP } \\ 2 " \times 2 " \end{gathered}$	
		Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{gathered} \hline \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{array}{\|c\|} \hline \text { Air } \\ \text { Motive } \\ \hline \end{array}$
psig	psig	lb/hr															
15		3,100	3,350	6,200	6,700	4,500	4,850	9,000	9,700	6,100	8,100	12,200	16,200	6,900	9,200	13,800	18,400
25		4,600	4,875	9,200	9,750	6,600	7,000	13,200	14,000	8,700	9,300	17,400	18,600	10,200	10,900	20,400	21,800
50	5	4,900	5,100	9,800	10,200	7,100	7,375	14,200	14,750	8,900	9,675	17,800	19,350	10,600	11,100	21,200	22,200
75	5	5,200	5,300	10,400	10,600	7,200	7,400	14,400	14,800	9,200	9,800	18,400	19,600	10,750	11,300	21,500	22,600
100		5,400		10,800		7,300	7,450	14,600	14,900	9,400		18,800		10,900		21,800	
125		5,500		11,000		7,400		14,800		9,900		19,800		11,600		23,200	
25		3,500	4,025	7,000	8,050	5,400	6,200	10,800	12,400	6,300	8,200	12,600	16,400	7,000	10,100	14,000	20,200
50		4,100	4,425	8,200	8,850	6,300	6,800	12,600	13,600	8,200	10,400	16,400	20,800	9,600	12,200	19,200	24,400
75	15	4,300	4,550	8,600	9,100	6,500	6,900	13,000	13,800	9,200	11,100	18,400	22,200	10,800	13,100	21,600	26,200
100		4,800		9,600		6,700		13,400		9,600		19,200		11,200		22,400	
125		4,900		9,800		6,800		13,600		9,800		19,600		11,600		23,200	
35		2,900	3,425	5,800	6,850	4,200	4,950	8,400	9,900	6,100	7,900	12,200	15,800	7,100	9,200	14,200	18,400
50		4,000	4,500	8,000	9,000	5,800	6,400	11,600	12,800	7,100	9,600	14,200	19,200	8,300	11,200	16,600	22,400
75	25	4,400	4,730	8,800	9,500	6,000	6,500	12,000	13,000	8,600	10,800	17,200	21,600	10,100	12,700	20,200	25,400
100		4,700		9,400		6,100		12,200		8,700		17,400		10,200		20,400	
125		4,800		9,600		6,200		12,400		9,100		18,200		10,300		20,600	
50		3,300	4,050	6,600	8,100	4,350	5,350	8,700	10,700	5,000	6,500	10,000	13,000	5,700	7,600	11,400	15,200
60		3,600	4,250	7,200	8,500	5,100	6,000	10,200	12,000	5,900	7,400	11,800	14,800	6,600	8,800	13,200	17,600
75	40	4,000	4,475	8,000	8,950	5,700	6,375	11,400	12,750	6,650	8,300	13,300	16,600	7,600	10,100	15,200	20,200
100		4,200		8,400		6,000		12,000		7,200		14,400	*	8,400	*	16,800	*
125		4,500		9,000		6,400		12,800		7,800		15,600		9,400	*	18,800	
70		3,200	4,300	6,400	8,600	3,800	5,050	7,600	10,100	4,300	6,100	8,600	12,200	4,500	7,000	9,000	14,000
75	60	3,500	4,650	7,000	9,300	4,100	5,175	8,200	10,350	4,500	6,300	9,000	12,600	4,700	7,100	9,400	14,200
100	60	3,700		7,400		4,500		9,000		5,500		11,000		6,400		12,800	
125		3,800		7,600		4,800		9,200		5,700		11,400		6,600		13,200	

NOTES: Published capacities are based on the use of external check valves supplied by Armstrong. Fill head measured from drain point to top of pump cap. See figures on page CRE-25. Although motive pressures are shown at high pressure differentials (difference between motive inlet pressure and total lift or back pressure), it is preferable to use a motive pressure of $10-15 \mathrm{psig}$ ($0.65-1.0 \mathrm{bar}$) above discharge (outlet) pressure. This ensures longevity of economical (brass) check valves and reduces both venting time and temperature differential (on steam). If a higher differential is used, stainless steel check valves are recommended.
*Consult factory.
Custom packages available upon request-consult factory.

Metric Conversion Formulas

Convert lb/hr to kg/hr—By dividing by 2.2046 Example: $1,800 \mathrm{lb} / \mathrm{hr} \div 2.2046=816 \mathrm{~kg} / \mathrm{hr}$
Convert psig to bar-By dividing by 14.5 Example: $15 \mathrm{psi} \div 14.5=1.03 \mathrm{bar}$
Convert psig to $\mathrm{kg} / \mathrm{cm}^{2}$ —By dividing by 14.22 Example: $15 \mathrm{psi} \div 14.22=1.05 \mathrm{~kg} / \mathrm{cm}^{2}$
All dimensions and weights are approximate. Use certified print for exact dimensions. Design and materials are subject to change without notice.

Pumping Trap Receiver Package Capacities

Motive Pressure	Total Lift or Back Pressure	$\begin{gathered} \text { SPT-412RP } \\ 3^{\prime \prime} \times 22^{\prime \prime} \\ \hline \end{gathered}$		$\begin{gathered} \text { DPT-412RP } \\ 3^{\prime \prime} \times 2^{" 1} \\ \hline \end{gathered}$		$\begin{gathered} \text { SPT-3512RP } \\ 3^{\prime \prime} \times 2^{\prime \prime} \\ \hline \end{gathered}$		$\begin{gathered} \text { DPT-3512RP } \\ 3^{\prime \prime} \times 2^{2 \prime} \\ \hline \end{gathered}$		$\begin{gathered} \text { SPT-312RP } \\ 3^{\prime \prime} \times 2 \text { 2" } \\ \hline \end{gathered}$		$\begin{gathered} \text { DPT-312RP } \\ 3^{\prime \prime} \times 2^{1 "} \\ \hline \end{gathered}$	
		Steam Motive	$\begin{gathered} \hline \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{gathered} \hline \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$	Steam Motive	$\begin{gathered} \text { Air } \\ \text { Motive } \\ \hline \end{gathered}$
psig	psig	lb/hr	1b/hr	lb/hr									
15		7,500	8,100	15,000	16,200	8,300	10,300	16,600	20,600	9,000	12,300	18,000	24,600
25		11,000	11,650	22,000	23,320	12,100	12,950	24,200	25,900	13,200	14,200	26,400	28,400
50		11,700	12,150	23,400	24,300	13,400	14,000	26,800	28,000	15,100	15,800	30,200	31,600
75	5	12,000	12,350	24,000	24,700	13,700	14,300	27,400	28,600	15,300	16,100	30,600	32,200
100		12,100	*	24,200	*	14,000	*	28,000	*	15,500	*	31,000	*
125		12,200	*	24,400	*	14,400	*	28,800	*	16,600	*	33,200	*
25		7,200	8,275	14,400	16,550	8,100	9,800	16,200	19,600	9,000	11,200	18,000	22,400
50		10,400	11,250	20,800	22,500	11,600	12,600	23,200	25,200	12,800	13,800	25,600	27,600
75	15	10,800	11,450	21,600	22,900	12,500	13,300	25,000	26,600	14,200	15,000	28,400	30,000
100		11,000	*	22,000	*	11,000	*	22,000	*	14,300	*	28,600	*
125		11,200	*	22,400	*	11,300	*	22,600	*	15,100	*	30,200	
35		6,900	8,150	13,800	16,300	7,600	9,900	15,200	19,800	8,100	11,500	16,200	23,000
50		9,700	10,850	19,400	21,700	10,000	10,650	20,000	21,300	10,200	12,750	20,400	25,500
75	25	10,000	10,900	20,000	21,800	11,200	12,200	22,400	24,400	12,500	13,500	25,000	27,000
100		10,200	*	20,400	*	11,450	*	22,900	*	12,700	*	25,400	*
125		10,400	*	20,800	*	11,600	*	23,200	*	13,000		26,000	*
50		5,800	7,125	11,600	14,250	6,200	8,500	12,400	17,000	6,600	9,800	13,200	19,600
60		6,900	8,150	13,800	16,300	7,700	9,400	15,400	18,800	8,400	10,500	16,800	21,000
75	40	7,600	8,500	15,200	17,000	8,700	10,600	17,400	21,200	9,800	12,700	19,600	25,400
100		8,100	*	16,200	*	9,100	*	18,200	*	10,100	*	20,200	*
125		8,500	*	17,000	*	9,400	*	18,800	*	10,300	*	20,600	*
70		5,000	6,650	10,000	13,300	5,700	8,500	11,400	17,000	5,000	10,200	12,000	20,400
75		5,400	6,900	10,800	13,800	5,900	8,700	11,800	17,400	6,400	10,400	12,800	20,800
100	60	6,000	*	12,000	*	6,500	*	13,000	*	7,100	*	14,200	*
125		6,400	*	12,800	*	6,900	*	13,800	*	7,400	*	14,800	*

NOTES: Published capacities are based on the use of external check valves supplied by Armstrong. Fill head measured from drain point to top of pump cap. See figures on page CRE-25. Although motive pressures are shown at high pressure differentials (difference between motive inlet pressure and total lift or back pressure), it is preferable to use a motive pressure of 10-15 psig (0.65-1.0 bar) above discharge (outlet) pressure. This ensures longevity of economical (brass) check valves and reduces both venting time and temperature differential (on steam). If a higher differential is used, stainless steel check valves are recommended.
*Consult factory.
Custom packages available upon request-consult factory.

Metric Conversion Formulas

> Convert lb/hr to kg/hr—By dividing by 2.2046 Example: $1,800 \mathrm{lb} / \mathrm{hr} \div 2.2046=816 \mathrm{~kg} / \mathrm{hr}$
> Convert psig to bar—By dividing by 14.5 Example: $15 \mathrm{psi} \div 14.5=1.03 \mathrm{bar}$ Convert psig to $\mathrm{kg} / \mathrm{cm}^{2}$ —By dividing by 14.22 Example: $15 \mathrm{psi} \div 14.22=1.05 \mathrm{~kg} / \mathrm{cm}^{2}$

Sizing and Selection-PT-100/200/300/3500/400 Series

The Armstrong non-electric pump trap is sized based on actual condensate load (lb/hr or kg/hr) being pumped. The following steps are used to size the pump.

1. Determine the total condensate load to be pumped in $\mathrm{lb} / \mathrm{hr}$ or $\mathrm{kg} / \mathrm{hr}$. See table on page CRE-12 for conversion factors.
2. Determine the total back pressure the pump will operate against. Total back pressure is the sum of the following:

- Vertical lift expressed in psig. See conversion formula below to convert lift to psig
- Existing pressure in condensate return line or D.A. tank
- Frictional loss from pipe, valves and fittings

3. Determine type of motive gas to be used (steam, air or other inert gas) and pressure available.

Example:

- Condensate load = 7,100 lb/hr (3,221 kg/hr).
- Total back pressure $=25$ psig (1.5 bar)
(25 foot vertical lift = 10.8 psig, 14 psig in condensate return line).
- Motive pressure is steam at 50 psig (3.5 bar).

Solution: Model PT-3508

Find 25 psig total lift or back pressure in column two of Low Profile Pump Trap Capacities table on page CRE-12. Then find 50 psig motive pressure in column one. Move across the capacity table until you reach a model number with the correct capacity. A PT-3508 has been highlighted above for this example.

Either a closed reservoir pipe or a vented receiver is required for proper condensate storage during the pump-down cycle of the pumping trap.

For vented/open system receiver sizing:

- Determine the pressure from where the condensate is being discharged.
- Determine condensate load.

Reference Percentage of Flash Steam chart on page CRE-23 to find the pressure that corresponds with the discharge condensate pressure. For this example, use 15 psig.

Follow 15 psig on the horizontal axis where it intersects the curve. Move left from the intersecting lines to the vertical axis for the percentage of flash steam that is created. For this example it will be 3\% (see shaded area on Percentage of Flash Steam chart).

Multiply 3% by the condensate load. Using example above $7,100 \mathrm{lb} / \mathrm{hr} .7,100 \times .03=213 \mathrm{lb} / \mathrm{hr}$ flash steam.

Using the Vented Receiver Sizing table on page CRE-23, find the amount of flash steam in column one. Follow the table across to determine the size of the vented receiver. (See shaded area on Inlet Reservoir Pipe Sizing table-page CRE-23 for this example.)

For closed reservoir piping:

1. Determine condensate load (using example above $7,100 \mathrm{lb} / \mathrm{hr}$).

Reference the inlet reservoir pipe sizing for closed systems on page CRE-23. Find $7,100 \mathrm{lb} / \mathrm{hr}$ in column one. Move horizontally across to find proper pipe size. (Note length or diameter may be slightly enlarged when capacity falls between given condensate loads in column one.) Selection is shaded.
Ser

Accessories

Use of external check valves required for operation of pumping trap.

- Inlet Swing Check Valve

-NPT Bronze ASTM B62
-Teflon ${ }^{\text {D }}$ Disc
-Class 150 (Minimum)

- Outlet Lift Check Valve
-NPT Bronze ASTM B62
—Teflon ${ }^{\text {D }}$ Disc
-Class 150 (Minimum)
- Inline Check Valves
-Stainless Steel Non-Slam
Check Valves
(Recommended for use when pressure differential is greater than suggested 10-15 psi and when using air as motive gas.)
-
- Bronze Glass Gauge Assembly with Protective Bronze Rods
- Armored Steel Gauge Glass Assembly
- Removable Insulation Jacket
- PRV Station
- Receivers

Features

- Totalizer is UL recognized, CSA certified
- 5 -year lithium battery life
- Eight-digit counter readout
- Both totalizer and housing are NEMA 4 rated, for protection against dust particles and water

Digital Cycle Counter

